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Abstract When a single-degree-of-freedom underdamped system is subjected to a step function force in
order that it eventually acquires a constant displacement, its response shows undershoots and overshoots.
Since a step function force is difficult, if not impossible, to apply to many aerospace, civil, and mechanical
engineering systems because of their inertias, this paper looks at simple forces that can be generated from
a practical standpoint and are not instantaneously applied, that cause an underdamped oscillator to acquire
a constant displacement without any overshoots and/or undershoots. These forces are ramped up (or down)
over a short duration of time and held constant thereafter. A preliminary approach to the development of
such force–time histories is presented by using a force given by a polynomial in time. Open-loop optimal
control is next considered, and then closed-loop optimal control. The optimal control problem does not fall
within the standard rubric of terminal control and a new approach for doing this is developed. These ideas
are then woven into the development of a methodology that allows an undamped/underdamped single degree
of freedom system to track a desired piecewise constant displacement time-history using forces that do not
need to be instantaneously applied and that generate rippleless responses with no overshoots/undershoots. The
methodology is also applicable to classically damped multi-degree-of-freedom systems with underdamped
modes of vibration.

1 Introduction

This paper deals with the determination of practically usable forces that allow a linear underdamped single-
degree-of-freedom (SDOF) mechanical system to follow a time history of piecewise constant displacements
without any overshoots or undershoots. The desired response being piecewise constant over each subinterval
of time, one is naturally drawn to the study of the response of such a system to a step input.

However, in most aerospace, civil, and mechanical engineering systems the control inputs being forces, the
generation of forces that fit the description of a step input is often difficult to realize from a practical standpoint
because of the system’s inertia. Often, in practice, it is indeed very difficult, if not impossible, to generate
abrupt, instantaneous forces, especially if they are required to be large.

The problem discussed in this paper is not restricted only to mechanical components modeled as single-
degree-of-freedom (SDOF) systems, since a vibratingmulti-degree-of-freedom (MDOF) system that is approx-
imated well enough by a classically damped system—and numerous physical systems today are modeled in
this way—would also have modes that would be caused to suffer in a similar manner.

There are other application areas too wherein a system is required to track a desired piecewise constant
time-history without creating overshoots/undershoots, such as in the power industry for switching smoothly
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between different constant power level outputs during, say, the course of a day. Process industries where
constant levels of chemicals need to be mixed/produced also encounter similar needs.

The paper is divided into two conceptual parts. The first part considers the elemental problem of tracking a
desired constant displacement which the oscillator does not already have. Specifically, it considers the problem
of finding the control force over an interval of time to steer the motion of an underdamped oscillator that starts
with some initial velocity and displacement (often, both zero) so that it achieves a desired final constant
amplitude of displacement, xf . Depending on the force generation capabilities of the controller at hand, one
might further prefer that this final desired constant displacement xf be reached as soon as possible, and thereafter
exactly maintained; or, that the constant displacement be reached in a time interval that is less than, or equal
to, some specified value, and be exactly maintained thereafter. Furthermore, it is desirable that the response
smoothly and monotonically gets to its desired constant final value, xf , with no overshoots/undershoots. This
is because a large overshoot in the oscillator’s response above xf , especially when it is lightly damped, can
have significant ill-effects. It could over-stress the SDOF system leading to mechanical failure and/or the
impairment of its function. Often, it may also affect the behavior of the overall system of which the SDOF
system is a component, since the larger system may not be able to function properly until the response of the
component in question settles down in a close enough vicinity of its desired final state.

There has been a considerable amount of work in the area of preventing/reducing overshoots and under-
shoots produced by step functions in systems modeled by a general set of linear differential equations. A good
review of various PID controller designs for such systems subjected to a step function input may be found
in Ref. [1], and the numerous papers this reference cites. Various techniques have been used for controllers
that are tuned/optimized by different approaches, using state-space and/or pole-frequency methods. General
conditions for no overshoots for linear systems subjected to step inputs have been found by Phillips and Seborg
[2], Hara et al. [3], and Vidyasagar [4]. However, as pointed out earlier, step function forces are difficult to
generate in mechanical systems and therefore this paper addresses the question of having an SDOF system
reach a constant displacement value with no undershoots or overshoots through the use of forces that are not
instantaneous but applied over a specified interval of time.

In this paper, the necessary and sufficient conditions are obtained for the force to result in a constant
displacement at, and beyond, a pre-specified period of time T . These conditions specify restrictions on both
the displacement and the force at time T . Forces that are smooth and that produce no overshoots are then
developed using three approaches. The first is a polynomial force that satisfies the necessary and sufficient
conditions. This is a preliminary step that obtains the force in closed form and illustrates the realizability of
such a ‘control’ force. It is akin to the use of input shaping [5], though here this is done in the time domain
and exactly engenders a constant response at, and beyond, the time T , with no overshoots/undershoots. Next,
optimal control is utilized to obtain a desired force so that the oscillator starting from rest reaches a constant
amplitude of response at, and beyond, time T while ensuring no overshoot beyond time T . Here the constraint
on the magnitude of the control force at time T poses a difficulty since it places a constraint on the optimal
control force over a set of measure zero. This places the problem beyond a straightforward terminal-state
optimal control problem and points to the possible reason why this does not appear to have been done hereto.
In this paper, a simple approach for handling this constrained terminal control problem in which the desired
control force is required to have a specific value at the terminal time is presented. Both open-loop and feedback
optimal control approaches are developed.

In the second part, in this paper, the understanding of this elemental problem is extended to the development
of a control methodology to have an underdamped oscillator track a piecewise constant displacement time-
history with no overshoots and undershoots using control forces that are not instantaneous but are applied over
a prespecified duration of time.

The structure of this paper is as follows. Section 2 begins with the response of an undamped oscillator.
It shows that it is possible to generate a simple force–time history such that the force is gradually ramped
up (or down) over a period of time and then held constant, so that an undamped oscillator starting from rest
can achieve a constant displacement with no overshoots or undershoots. It is shown that the duration of the
linear (in time) ramp up (down) must equal the natural period of vibration of the oscillator (or a multiple of
it). Section 3 provides the necessary and sufficient conditions for an underdamped oscillator starting from rest
to have a constant displacement after a duration, T , of time. Starting with a preliminary approach by using a
force that is polynomial in time, Sect. 4 develops optimal control approaches to generating practical force–time
histories that allow an underdamped system to acquire a constant displacement after a prespecified duration
of time with no overshoots and undershoots in its entire response. The problem of having constraints on the
control force over sets of measure zero leads to standard optimal control formulations becoming inapplicable.
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Fig. 1 a Force F(t) ramps up linearly in time to its final value F0 = kxf and remains constant for t ≥ T̄ . b The equivalent force
f (τ ) on the oscillator described by Eqs. (3) and (4), T = ωn T̄

Anovel approach is presented to circumvent this difficulty, and both open-loop and closed-loop optimal control
techniques are thereby developed. Section 5 demonstrates the ease and efficacy with which the closed-loop
optimal control obtained herein enables an underdamped oscillator to track a piecewise-constant displacement
time-history with no overshoots or undershoots.

2 The undamped oscillator

To gain some initial insight, consider an undamped oscillator with mass m and stiffness k. We assume that at
time t = 0, the displacement and the velocity of the oscillator are both zero so that x(0) = ẋ(0) = 0. Instead
of applying the force F0 abruptly (as with a step function) we consider applying the force more gradually as
a (linear) ramp over a time duration t = T̄ , starting at zero and reaching its final value, F0, at time T̄ , and
thereafter remaining constant, as shown in Fig. 1a.

Thus, the oscillator described by the equation

mẍ + kx = F(t), x(t = 0) = 0, ẋ(t = 0) = 0 (1)

is subjected to the forcing function

F(t) =
{

(F0/T̄ ) t, 0 ≤ t ≤ T̄

F0, t ≥ T̄
(2)

instead of a step function force, which, as mentioned earlier, cannot be generated from a practical standpoint
in most mechanical systems. Since we want the force in the time interval [0, T̄ ] to be most often simple to
generate, we start with one that linearly changes with time. Hence, in the interval t ∈ [0, T̄ ] the force F(t) is
linear in time; it reaches its final value F0 at time T̄ ; thereafter, it keeps constant (see Fig. 1a). Dots denote
derivatives with respect to time, t .

The intention is to steer the system by subjecting it to a force that yields a desired final (for t > T̄ ) constant
displacement, xf . When the final displacement of the oscillator is constant for t ≥ T̄ , ẋ(t) ≡ 0 so that ẍ(t) = 0,
and from Eq. (1) we obtain x(t) = xf = F0/k. Hence, given a value of xf , the magnitude of the force F0 in
Eq. (2) is simply F0 = kxf . Knowing that the final force level must be F0, the slope of the ramp in Fig. 1a
must be adjusted so that at t = T̄ , F(T̄ ) = F0 as shown in Fig. 1a. The natural frequency of oscillation of the
oscillator described in Eq. (1) is ωn = √

k/m and its period Tn = 2π/ωn .
In order to eliminate dependence on the natural frequency of oscillation, ωn , we divide Eq. (1) by m and

consider the dimensionless time τ = ωn t . Equations (1) and (2) are thus written alternatively as

d2x

dτ 2
+ x = F(τ )

k
:= f (τ ), x(τ = 0) = 0, x ′(τ = 0) = 0, (3)

with

f (τ ) =
{

F0
k

τ
T = xf

τ
T , 0 ≤ τ ≤ T,

xf , τ ≥ T,
(4)
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where T = ωn T̄ and the prime denotes differentiation with respect to τ . In what follows, we shall often use
the system described by Eqs. (3) and (4) since it has the advantage that the normalized frequency of vibration
of the system described by Eq. (3) is always unity and so its natural period TN = 2π ; the capital N subscript
stands for the normalized period, with respect to the dimensionless time τ . See Fig. 1b. Alternatively stated,
the use of a scaled time τ removes dependence on the natural frequency of vibration by normalizing ωn to
unity. Note that

T/TN = ωn T̄ /TN = ωn T̄ /2π = T̄ /(2π/ωn) = T̄ /Tn . (5)

Our aim is to find a suitable value of the time T during which the force f (τ ) gradually increases with time
so that the response of this undamped system is steered in such a manner that it gets to the desired final
displacement xf with no overshoots/undershoots. Upon solving Eq. (3) using Eq. (4) for 0 ≤ τ ≤ T , it is easy
to show that the displacement x(τ ) and the velocity x ′(τ ) are given by

x(τ ) = xf
T

[τ − sin(τ )], and x ′(τ ) := dx

dτ
= xf

T
[1 − cos(τ )], 0 ≤ τ ≤ T (6)

so that

x(T ) = xf

[
1 − sin(T )

T

]
, and x ′(T ) = xf

T
[1 − cos(T )]. (7)

Using these values of the displacement and velocity at time T , the response of system (3) for τ ≥ T (during
which the force f (τ ) is held constant and equal to xf , see Fig. 1b) can now be simply written down as

x(τ ) = x(T ) cos(τ − T ) + x ′(T ) sin(τ − T ) + xf{1 − cos[(τ − T )]}, τ ≥ T, (8)

which upon using the expressions for x(τ = T ) and x ′(τ = T ) from Eq. (7) becomes

x(τ ) = xf + xf
T

sin(τ − T ) − xf
T

{sin(T ) cos(τ − T ) + cos(T ) sin(τ − T )}︸ ︷︷ ︸
=sin(τ )

, (9)

so that

x(τ ) = xf + xf
T

[sin(τ − T ) − sin(τ )], for τ ≥ T . (10)

From Eq. (10) we observe that when

T = r (2π) := rTN , r = 1, 2, . . . , (11)

where TN = 2π is the (normalized) period of the oscillator, then

x(τ ) = xf = F0/k, for τ ≥ T ! (12)

What Eqs. (11) and (12) say is that, somewhat surprisingly, if the duration, T , in the ramp shown in Fig. 1b
is any nonzero multiple of the normalized natural period TN (= 2π) of the undamped oscillator described by
Eqs. (3) and (4), its response x(τ ) is a constant equal to xf for any (all) time τ that (equals or) exceeds this
duration T shown in Fig. 1b! Of equal importance is the observation that the response x(τ ) of the oscillator
for 0 ≤ τ ≤ T is given in Eq. (6), which is seen to be a monotone increasing function of τ , since x ′(τ ) ≥ 0
for all 0 ≤ τ ≤ T . In short, the response x(τ ) therefore shows no oscillations in the interval 0 ≤ τ ≤ T !

In retrospect, we could have obtained this result in Eqs. (11) and (12) in a much simpler way. From Eq.
(7) we see that when T = rTN = 2πr , then x(τ = T ) = xf and x ′(τ = T ) = 0. Using Eq. (8) then trivially
leads to the result given in Eq. (12). In the next section, we shall show that these conditions on x and x ′ will
prevail even when the oscillator is damped.

Alternatively stated, Eqs. (11) and (12) inform us that when the force F(t) (see Eqs. (1) and (2)) is ramped
up starting from zero (see Fig. 1a) over a duration of time (note that T̄ = T/ωn)

T̄ = rTN/ωn = r(2π/ωn) = rTn, r = 1, 2, . . . (13)

so that it reaches a value of F0 = xfk at time T̄ = rTn and thereafter remains constant, then the displacement of
the oscillator x(t) remains constant and equal to xf for all t ≥ T̄ . From the response x(τ ) for 0 ≤ τ ≤ T = rTN ,
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Fig. 2 m = 2, k = 8, F0 = 16. a Scaled ramp function, b scaled response to ramp, c scaled response to step function, d scaled
response, ẋs(t) to ramp

one can directly infer the behavior of x(t) for 0 ≤ t ≤ T̄ = rTn . In the time interval [0, T̄ ], x(t) is a monotone
increasing function with ẋ(t) ≥ 0.

From a practical standpoint, since our aim most often is to steer the oscillator to reach a desired final
constant displacement xf as soon as possible, one would usually choose r in Eqs. (11) (or (13)) to be unity.

Of course, since the SDOF system (Eq. (1)) has no damping, its response x(t) to the application of a step
function force at t = 0 continues forever. One can think of the response as having an overshoot beyond its
constant (static) displacement value that never decays because of the elephantine memory of the undamped
oscillator. The response of the undamped system to such a step function (applied at t = 0) of magnitude F0 is
simply obtained as (assuming again x(0) = ẋ(0) = 0)

x(t) = F0
k

[1 − cos(ωnt)], (14)

whose mean value over a period (Tn) of the oscillator is the desired final displacement value xf = F0/k.
Equation (14) also shows that the overshoot is twice the static displacement value, which is of course well
known.

We now show a comparison between the response of an undamped oscillator (Eqs. (1) and (2)) to: (i) a
step function of magnitude F0 (applied at t = 0) and (ii) the ramp function F(t) given in Eq. (2) and shown
in Fig. 1, with T̄ = Tn , Tn being the natural period of the oscillator (we choose r = 1 in Eq. (13)). The
numerical simulation is done using Matlab’s platform for mass m = 2, stiffness k = 8, and a desired final
constant displacement xf = 2, all in consistent units. The frequency of vibration of this oscillator is 2 rad/s
and its period Tn is πs. The force required to generate the desired final displacement is F0 = kxf = 16. The
initial (at t = 0) displacement and velocity of the oscillator are both zero.

Figure 2a gives the scaled ramp function Fs(t) = F(t)/F0 shown in Fig. 1 with T̄ = Tn = πs; Fig. 2b
shows the scaled response xs(t) = x(t)/xf of the oscillator to this ramp function. In these figures, and those
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to follow, the subscript ‘s’ is used to indicate that the force F(t) on the oscillator is scaled by F0, and its
displacement response x(t) is scaled by xf . For comparison, the scaled response of the oscillator to a step
function force (applied at time t = 0) whose scaled magnitude is unity (i.e., F0 = 16) is shown in Fig. 2c.
Figure 2d shows that ẋs(t) > 0 in the interval [0, Tn], except at its endpoints, where it is zero.

The response to the ramp function shows no overshoot or undershoot for 0 ≤ t ≤ Tn , as expected, since
ẋ(t) > 0 in the interior of the interval [0, Tn], with ẋ(0) = ẋ(Tn) = 0. For values of t ≥ Tn , the displacement
response is a constant and has the desired final constant value xf = 2, as expected from Eqs. (11) and (12). As
seen in Fig. 2b, the (displacement) response (i) starts at zero at time t = 0, with zero velocity, (ii) monotonically
increases to reach the level xf again with zero velocity, and (ii) then remains a constant, as shown in Fig. 2b.
Not only is a step function force difficult to generate in mechanical systems, it causes the displacement of an
undamped oscillator (with zero initial conditions) to undergo an endless sequence of over- and undershoots
(Fig. 2c), that prevent the response of the oscillator from settling down to the final desired constant displacement
value, xf .

This demonstrates that the oscillations in the response shown in Fig. 2c of the undamped oscillator (that has
an infinite ‘memory’) to a step function force can be totally suppressed by using a suitable ramp as the forcing
function, and the desired final constant displacement value xf can be obtained for t ≥ Tn without the slightest
ripple (oscillation) in its response! To the best of the author’s knowledge, though simple and elementary, this
result appears to have gone unnoticed in the existing literature on the theory of vibrations (e.g., Refs. [6–11]).

The force for achieving this is surprisingly simple: instead of abruptly applying a constant force F0 = kxf
to the oscillator (i.e., applying a step function force of magnitude F0) and thereby causing it to ‘shudder’ with
endless overshoots and undershoots in its response (see Fig. 2c), all that is needed is to start the force from
zero, as one would in any practical situation, and simply ramp it up linearly in time over a duration equal to
the natural period Tn of the oscillator so that at time t = Tn the force reaches its full value F0! Thereafter, for
t ≥ Tn , the force is simply kept constant at this value, F0 (see Fig. 2a).

This simple analysis, however, has three important drawbacks that must be considered.
(1) First, the force F(t) obtained above relies on being able to exactly set T̄ = Tn for the ramp function

[Eq. (2)] shown in Fig. 2a, and in practical situations this may be difficult to achieve with exactitude. It would
therefore be useful to inquire how thingsmight change if we are unable to implement, because of some practical
limitations, this time duration T̄ as exactly as required by our input force–time history shown in Fig. 2a. We
know that our differential equation of motion is linear, and that its solution is a continuous function of the
parameters describing the system. Hence, in a practical real-life situation, were we to have a small error in
implementing the exact value of T̄ (= Tn) after which the force input F(t) remains constant, the oscillator’s
response would be appropriately altered in a small and continuous fashion.

Figure 3 shows a simulation for the system considered in Fig. 2 with the force input F(t) shown in Fig. 2,
except that the value of T̄ is not Tn as required [see Eq. (2)], but T̄ = (1±0.05)Tn . That is, we consider an error
of ± 5% in the practical implementation of the desired value of T̄ = Tn when generating our applied force.
The parameters describing the oscillator (m and k) are the same as those used to obtain Fig. 2. The response
scaled by xf , namely, xs(t) = x(t)/xf is shown. The dashed curve shows, for comparison, the response to a
step function force of magnitude F0 = 16 applied at t = 0.

It is easy to show that when T̄ = (1+ α)Tn , where α is the relative error in implementing the proper value
of T̄ , the expression corresponding to Eq. (10) becomes

Fig. 3 Response to the ramp function with a T̄ = 0.95Tn , b T̄ = 1.05Tn
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Fig. 4 Scaled response, m = 2, k = 8, ζ = 7%. a T̄ = 0.95Tn, b T̄ = Tn , c T̄ = 1.05Tn

x(t) = F0
k

[
1 − sin(πα)

π(1 + α)
cos(ωnt − πα)

]
, for t ≥ T̄ . (15)

Equation (15) shows that a ripple with frequency ωn , phase angle πα, and (scaled) amplitude sin(πα)
π(1+α)

≈
α − α2 + O(α3) is introduced in the response. As seen from Fig. 3, the (scaled) amplitude of this ripple in the
response for α = 0.05 is small and has a value of 0.0474.

(2) The second drawback of our simple analysis, which is equally important if notmore so, is that undamped
systems are idealizations, and real-life systems always have some amount of damping. Using the continuity
argument stated before, if we were to have a damped system in which the percentage of critical damping
is “small”—instead of being zero as in the undamped systems considered hereto—its response to our ramp
function (with T̄ = Tn) would change from that shown in Fig. 2b in a small and continuous manner. Figure 4b
shows the behavior of the underdamped system described by

mẍ + cẋ + kx = F(t) =
{

(F0/T̄ ) t, 0 ≤ t ≤ T̄ ,

F0, t ≥ T̄ ,
x(0) = ẋ(0) = 0, (16)

where the critical damping ζ = c/(2mωn) = 7%, with values, as before, of m = 2, k = 8, and F0 = 16 (in
consistent units), so that the desired final displacement is xf = F0/k = 2 (in consistent units). The scaled
response xs(t) = x(t)/xf is shown.

Again, in a practical implementation it might be difficult to set T̄ exactly equal to Tn . Figure 4 shows
simulations of the response (solid lines) of the damped system (m = 2, k = 8) to the ramp function (see Eq.
(16)) in which T̄ = 0.95Tn, Tn, and 1.05Tn. For comparison, in each figure, the dashed line (which is the
same in all 3 figures) shows the damped (ζ = 7%) response to a step function of magnitude F0 = 16 (applied
at t = 0).

These figures show that the use of a ramp function can constitute a simple and practical way of steering a
lightly damped SDOF oscillator to a desired final constant displacement value, assuming that its natural period
is moderately small. The step function response of the damped oscillator shows a much larger overshoot than
those for the ramp functions. Also, the step function response takes considerably greater time to get into the
vicinity of the final desired constant displacement, xf = 2.

Our reliance on the continuity of solutions of the differential equation (16) on the parameter ζ would work
well when the value of ζ 	 1, which is a circumstance that often occurs in aerospace, mechanical, and civil
engineering systems. While quantitative estimates of the differences between the response in Fig. 2b and those
in Fig. 4 can be obtained by using perturbationmethods, such results would still be applicable onlywhen ζ 	 1

and
∣∣∣ T̄
Tn

− 1
∣∣∣ 	 1. And so, we would need a more precise method that would be applicable for underdamped

systems where 0 ≤ ζ < 1.
(3) The third shortcoming of our simple analysis is that we have chosen the duration of the ramp forcing

function T̄ = Tn (or alternatively, T = TN = 2π). One is usually interested in acquiring the desired final
constant displacement response, xf , quickly. What if the value of T̄ is unacceptably large? What if the desired
constant displacement xf is required to be reached, for practical reasons, in a shorter span of time than Tn?

In the next section, we address these drawbacks. Our central aim is to device a simple force F(t)—not
necessarily a linear ramp function as was done in Eq. (16)—that guides an underdamped oscillator to a desired
final constant displacement state x(t) = xf without any overshoots or undershoots, given a prescribed value
of 0 < T̄ ≤ Tn .
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3 The underdamped oscillator

We consider an oscillator that starts with zero initial conditions with mass m, stiffness k, and percentage of
critical damping ζ . From the previous section, two zones of response are now conceptually recognized. The
first zone of response is conceptually typified by the interval [0, T̄ ] (see Fig. 1(a)) during which the force F(t)
changes from zero—though, in general, not linearly in time now—, thereby causing the displacement to also
change from zero and reach the desired final displacement xf at t = T̄ . The second zone is typified by the
region t ≥ T̄ (Fig. 1(a)) during which the response remains at its desired final (constant) displacement value
xf . We begin by focusing first on the second zone of response.

Our aim is to let the oscillator, whose displacement and velocity are as yet unknown at time t = T̄ , have
a given desired constant displacement xf for t ≥ T̄ , for some suitably prescribed time T̄ , when subjected to a
suitable external force F(t). This can be written as

mẍ + cẋ + kx = F(t), t ≥ T̄ > 0 (17)

with

x(T̄ ) = a, ẋ(T̄ ) = b. (18)

The parameter c equals 2mωnζ in Eq. (17). The damped period of vibration of the oscillator is denoted by
Td = Tn/

√
1 − ζ 2. We will be mainly interested in investigating 0 < T̄ ≤ Tn (and T̄ = Td).

Equations (17) and (18) are rewritten, as before, so that the normalized natural frequency of vibration of
the oscillator is unity by using the dimensionless time τ = ωnt . This yields the alternative relation

x ′′ + 2ζ x ′ + x = f (τ ), τ ≥ T > 0, x(τ = T ) = a, x ′(τ = T ) = b/ωn, (19)

where T = ωn T̄ , the primes now denote differentiation with respect to τ , 0 ≤ ζ < 1 is the percentage of
critical damping of the underdamped system, and xf is the desired final displacement. The normalized natural
period of vibration of the oscillator in Eq. (19) is TN = 2π , and its normalized damped period of vibration is
TD = 2π/

√
1 − ζ 2. We will presently find the constants a and b so that the oscillator described by Eq. (19)

has a desired final constant displacement xf for τ ≥ T > 0. Note that the corresponding constant external
force applied to the SDOF oscillator in Eq. (17) is given by F(t) = k f (τ ).

Since for all τ ≥ T , we want x(τ ) to equal xf , which is a constant, we must have x ′(τ ) = x ′′(τ ) = 0 for
τ ≥ T . Setting these derivatives to zero on the left hand side of Eq. (19) yields the relation f (τ ) = x(τ ), so
that f (τ ) = xf for τ ≥ T (or F(t) = k xf := F0 in Eq. (17)).

The solution to Eq. (19) is then straightforward and is given by

x(τ ) − xf = [a − xf ] exp(−ζ τ̃ ) cos(Sτ̃ ) +
[
w(T ) − xfζ

S

]
exp(−ζ τ̃ ) sin(Sτ̃ ), τ ≥ T, (20)

where

τ̃ = τ − T, S =
√
1 − ζ 2, and w(T ) = (b/ωn) + aζ

S
. (21)

Since the functions exp(−ζ τ̃ ) cos(Sτ̃ ), and exp(−ζ τ̃ ) sin(Sτ̃ ) are linearly independent for τ ∈ [T, ∞), and
sincewewant the oscillator’s response x(τ ) to equal the desiredfinal constant displacement response xf = F0/k
for (all) τ ≥ T , we require from Eq. (20) that

a = xf and w(T ) = xfζ

S
. (22)

Using Eq. (21) for w(T ) and the first relation in Eq. (22), we find from the second relation in Eq. (22) that

(b/ωn) + xfζ

S
= xfζ

S
[= w(T )],

so that b = 0, and therefore we require (see Eq. (19))

x(T ) = xf and x ′(T ) = 0. (23)
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Hence, the SDOF system described by the left-hand side of Eq. (19) will have a final desired constant response
x(τ ) = xf for τ ≥ T if

(1) f (τ = T ) = xf and, (2) x(τ = T ) = xf and x ′(τ = T ) = 0, (24)

or alternatively (see Eqs. (17) and (18)),

(2) F(t = T̄ ) = k xf and (2) x(t = T̄ ) = xf and ẋ(t = T̄ ) = 0. (25)

Also, when the set of conditions in Eq. (24) is satisfied, Eq. (20) shows that x(τ ) = xf for τ ≥ T . Hence, Eqs.
(24) and (25) provide a set of necessary and sufficient conditions for x(τ ) = xf for τ ≥ T .

We have thus described the conditions needed for the response of the oscillator to have a constant desired
displacement for τ(or t) ≥ T (or T̄ ), that is, in our second zone of response.

We now consider the first zone of response where τ ∈ [0, T ]. Since no instantaneous increase in force
is desired, because such an increase is difficult to generate in mechanical systems, we want that the force
f (τ = 0) = 0 (or alternatively, that F(t = 0) = 0). This is then a requirement that needs to be added to those
stated in Eq. (24) (or, Eq. (25)).

Thus, in the first zone of response, i.e., in the interval τ ∈ [0, T ], all we need to do is to steer the oscillator
described by (the left hand side of) Eq. (19) from its initial state x(0) = 0, x ′(0) = 0 to the state at time T
given by x(T ) = xf = F0

k , and x ′(T ) = 0 by applying a suitable force f (τ ) over the interval [0, T ]. This
steering force f (τ ) has two characteristics (a) f (0) = 0, and (b) f (T ) = xf . Upon reaching a value of xf at
time τ = T , the force f (τ ) thereafter remains constant at this value.

In summary, the idea then is to ramp up the force f (τ ) in the interval [0, T ] so that f (τ = 0) = 0 and
f (τ = T ) = xf , while ensuring that x(T ) = xf and x ′(T ) = 0. This can be done in numerous ways.

4 Forces that produce no overshoots/undershoots in the response of underdamped oscillators

In this section, we consider different approaches to obtaining the requisite force f (τ ) that ensures that the
response of the oscillator reaches the desired final constant value xf monotonically, with no overshoots or
undershoots, given the interval of time 0 < T ≤ TN over which the oscillator is required to reach this final
value. We begin with the simplest, preliminary approach that requires only an understanding of the elementary
theory of vibrations by using a polynomial forcing function, then move to open-loop optimal control methods,
and further on to robust closed-loop optimal control approaches that exactly engender responses with no ripples
in them.

4.1 Polynomial forcing function—a preliminary approach

A very simple form of the force f (τ ), 0 ≤ τ ≤ T , that is given by a polynomial in time is considered in this
subsection. We thus have the system

x ′′ + 2ζ x ′ + x = f (τ ), x(0) = x ′(0) = 0, (26)

where

f (τ ) =
{
a0 + b0τ + c0τ 2 + d0τ 3, 0 ≤ τ ≤ T,

xf , τ ≥ T > 0.
(27)

As per Eq. (24), our aim is to steer the oscillator from its initial state {x(0) = 0, x ′(0) = 0} to its final state
given by {x(T ) = xf , x ′(T ) = 0} in the interval τ ∈ [0, T ]. To ensure this we need to find the (constant)
coefficients a0, b0, c0 and d0 appropriately.

In addition, we want f (0) = 0 and f (τ = T ) = xf . Using Eq. (27), the first of these two conditions
requires that a0 = 0, and the second requires that

b0 = xf
T

− c0T − d0T
2. (28)

Thus, we need to find just the two independent constants, c0 and d0, in Eq. (27).
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The two constants c0 and d0 in Eq. (27) can be found using elementary methods so that x(τ ) and x ′(τ )
satisfy the conditions at times τ = 0 and τ = T .

Using Eq. (28), the response of the oscillator for 0 ≤ τ ≤ T to the force described in Eq. (26) is thus
described by the equation

x ′′ + 2ζ x ′ + x =
{ xf
T

− c0T − d0T
2
}

τ + c0τ
2 + d0τ

3, (29)

whose solution is easily obtained as (S = √
1 − ζ 2)

x(τ ) = A + Bτ + Cτ 2 + Dτ 3 + exp(−ζ τ)[H1 cos(Sτ) + H2 sin(Sτ)], (30)

where the constants

A = 2
(
T ζ + 4ζ 2 − 1

)
c0 + 2

(
T 2ζ − 24ζ 3 + 12ζ

)
d0 − 2ζ xf

T
, (31)

B = − (T + 4ζ ) c0 − (
T 2 − 24ζ 2 + 6

)
d0 + xf

T
, C = c0 − 6ζd0, and D = d0. (32)

To enforce the initial conditions x(0) = 0, x ′(0) = 0, we further require that

H1 = −A, and H2 = − (B + ζ A)

S
. (33)

Using Eqs. (31)–(33) in Eq. (30) the explicit solution x(τ ; ζ, c0, d0, xf) for 0 ≤ τ ≤ T is obtained.
We next enforce the conditions at τ = T , namely x(T ) = xf and x ′(T ) = 0. These two conditions give

two simultaneous equations for the constants c0(ζ, T, xf) and d0(ζ, T, xf),[
p1 p2
q1 q2

]
︸ ︷︷ ︸

A0

[
c0
d0

]
= xf

[
r1
r2

]
. (34)

The constants {pi , qi , ri }, i = 1, 2, which are functions solely of ζ and T , in Eq. (34) are explicitly given in
Appendix 1.

Upon solving these simultaneous equations for c0 and d0 and using Eq. (28) to obtain b0, the three coef-
ficients b0, c0, and d0 (recall, a0 = 0) that describe the force f (τ ) given in Eq. (27) are determined. We
note that f (τ = 0) = 0 and f (τ = T ) = xf . And this force also ensures that the oscillator’s displacement,
x(τ = T ) = xf , and its velocity, x ′(τ = T ) = 0. With these conditions on the state at τ = T (Eq. (24)), the
constant force f (τ ) = xf , τ ≥ T , will keep the displacement of the system constant at a value of xf .

From Eqs. (28) and (34), it is seen that the coefficients b0, c0, and d0, are each proportional to xf . One can
thus determine the coefficients b0, c0, and d0 using Eqs. (34) and (28) for xf = 1; to obtain the coefficients
for any desired value to xf in any specific situation each of these coefficients can simply be multiplied by the
desired xf . Also, for a given value of xf these coefficients are only functions of ζ and T .

The solution of Eq. (34) requires that the determinant of the matrix A0 be nonzero. This determinant,
which is given explicitly in Appendix 1, depends only on the parameters T and ζ . Its Taylor series expansion
at T = 0 is also provided in Appendix 1, and shows that its leading term is O(T 8). The determinant is plotted
for T/TN = T/2π ∈ [0.05, 1] and shown in Fig. 5a. Ten equally spaced points in this interval are taken,
and for each such value of this ratio the determinant is found for values of ζ ∈ [0, 0.99]. Each of these ten
values of T/TN generates a curve on the plot. As seen the determinant is nonzero; the determinant is bounded
between the two solid black lines for T/TN = 0.05 and T/TN = 1. For T/TN = 0.01, on the log10 scale
shown in Fig. 5a the determinant ≈ −12.48. Figure 5b shows the logarithm of the determinant of A0 for
T = TD := TN/

√
1 − ζ 2, which is the damped normalized period of the oscillator described by Eq. (26).

Once the triplet {b0, c0, d0} is obtained as above by solving Eq. (34) for the system described by Eqs.
(26) and (27), results for our original (non-normalized) oscillator with mass m and stiffness k can be simply
obtained, by noting that τ = ωnt . Thus, given the description of an oscillator, i.e., the values of the triplet {m,
k, 0 ≤ ζ < 1}, and the desired final constant displacement xf , one can explicitly and directly determine the
force F(t) required so that this system achieves the required desired displacement xf . The equation describing
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Fig. 5 a Det(A0) versus ζ for T/TN ∈ [0.05, 1], b Det(A0) versus ζ for T = TD := TN /
√
1 − ζ 2

Fig. 6 m = 2, k = 8, ζ = 7%. a Fs(t) = (B0t + C0t2 + D0t3)/F0 in t ∈ [0, Tn], b response to F(t)

its displacement x(t) is directly obtained from its counterpart, Eqs. (26)–(27), and is given by the equation
(T̄ = T/ωn)

mẍ + cẋ + kx = F(t) :=
{
B0t + C0t2 + D0t3, 0 ≤ t ≤ T̄ ,

F0 = k xf t ≥ T̄ > 0,
x(0) = ẋ(0) = 0 (35)

It will yield the final desired constant displacement x(t) = xf for t ≥ T̄ > 0. The constants in Eq. (35) are

B0 = kωnb0, C0 = kω2
nc0, and D0 = kω3

nd0 (36)

with c0, and d0 obtained by solving Eq. (34), and b0 obtained by using Eq. (28). With the constants
B0,C0, and D0 so obtained, we are also assured that x(T̄ ) = xf , and ẋ(T̄ ) = 0.

It should be noted that as yet no choice has been made about the value of the parameter T in Eq. (27) or
the corresponding parameter T̄ in Eq. (35).

As an example, we again take an underdamped SDOF system considered before with m = 2, k = 8, and
ζ = 0.07 (ωn = 2). The oscillator is assumed to start with zero displacement and velocity at t = 0. We
assume that the desired final constant displacement required of the oscillator is xf = 2. Therefore F0 = kxf .
Taking a hint from the undamped oscillator considered in the previous section, we take the duration of time T̄
(see Eq. (35)) over which the non-constant ramp force steers the oscillator to this final constant value of F0 as
T̄ = 2π/ωn := Tn , where Tn is the natural period of vibration of the oscillator (see Fig. 6a). The expression
for the force F(t) given in Eq. (35) now becomes

F(t) =
{
B0t + C0t2 + D0t3, 0 ≤ t ≤ Tn,

F0, t ≥ Tn .
(37)

As noted, the constants B0, C0, and D0 are found using Eq. (36). The constants c0 and d0 are obtained
by solving the simultaneous equations (34), with T = 2π ; knowing these two constants, b0 is determined as
noted in Eq. (28).We then obtain B0 = 6.3301,C0 = −0.4713, and D0 = 0.0247. The resulting (scaled) force
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Fig. 7 m = 2, k = 8. a Fs(t) = B0t + C0t2 + D0t3/F0 in t ∈ [0, Tn], b response to force F(t)

Fig. 8 m = 2, k = 8. a Fs(t) = B0t + C0t2 + D0t3 in t ∈ [0, Td ], b response to force F(t)

Fs(t) = F(t)/F0 is shown plotted in Fig. 6a. Note that Fs(Tn) = 1. The damping being ‘small’, the force
F(t) in the time interval [0, Tn] resembles a straight line as in Fig. 1, though it is not quite straight. While the
coefficient, B0, of the linear term in Eq. (37) is the largest, we find that |B0/C0| ≈ 13.4 and B0/D0 ≈ 256.3.

The oscillator’s response (solid line), which has been scaled by the desired steady state (static) response
xf = F0/k so that xs(t) = x(t)/xf , is shown in Fig. 6b. For comparison, the scaled response of the same
oscillator subjected to a step function force F0 (applied for t ≥ 0) is shown by the dashed line in Fig. 6b. As
seen, the oscillator’s response to the ramped-up force shown in Fig. 6a produces no oscillations whatsoever.

The manner in which the force F(t) in Eq. (37) depends on the percentage of critical damping ζ is shown
in Fig. 7a. The corresponding response of the oscillator for each of these values of ζ is shown in Fig. 7b.
What is significant in all these responses is that there are no overshoots and/or undershoots; the responses
monotonically increases without a ripple. We note that when ζ = 0 we recover the ramp function given in
Eq. (2) that is linear in time since the coefficients C0 = D0 = 0 in Eq. (37). This is because in Eq. (34)
det(A0) �= 0 and now r1 = r2 = 0, so that c0 = d0 = 0. Also, when ζ 	 1 the ramp-up to the final force
F0 = kxf is close to linear, as was argued earlier using our continuity argument. But when 0.1 < ζ < 1, the
force F(t) can be significantly nonlinear in time in the interval [0, Tn] as seen on Fig. 7a. Thus, these results
generalize our result in Sect. 2 to include oscillators that are underdamped. We note that the force F(t) can
exceed the value F0 which is required to maintain the desired final constant displacement xf , as seen in Fig. 7a
when ζ = 0.8.

Were we to set T̄ = 2π/ωd = Tn/
√
1 − ζ 2 := Td in Eq. (35), so that the ramp-up duration is the damped

period of vibration of the oscillator, we would get the results shown in Fig. 8 for various values of 0 ≤ ζ < 1.
Note that Td (duration over which the force is non-constant) now increases as ζ approaches unity, more easily
seen in Fig. 8b, which may be a drawback if such a system is required to reach its desired final constant
displacement xf quickly. Yet, the force F(t) ramps up monotonically with F(Td) = F0, and its magnitude
does not exceed F0 = kxf . We note that when ζ = 0 the oscillator is undamped and Tn = Td ; we then
recover the ramp function given in Eq. (2) that is linear in time. The response of the system corresponding
to values of ζ considered in Fig. 8a is shown in Fig. 8b. This sort of correspondence will be used in all the
plots that follow. As seen, the response increases monotonically to the desired final displacement xf with no
overshoots/undershoots.
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Fig. 9 m = 2, k = 8, T̄ /Tn = 0.7. For various ζ values a Fs(t), b xs(t), and c ẋs(t)

Most SDOF systems met in aerospace, mechanical, and civil engineering have values of ζ ≤ 0.4, and in
many situations, such as mechanical components and the lower modes of vibration in tall buildings, values
of ζ 	 1 are encountered, so that Tn ≈ Td . Then, the simple force F(t) given by Eq. (35) with T̄ = Td
obtained hereto allows the oscillator’s response x(t) to reach its desired final constant value xf at time Td with
no oscillations and it remains at this constant value thereafter.

However, as pointed out before, there is a time delay Td in reaching the desired final displacement value
xf , and this delay becomes significant as ζ approaches 1. This can be seen most distinctly in the plot in Fig. 8b
of the response xs(t) that corresponds to the value of ζ = 0.8. If this time delay Td is acceptable in a given
practical situation, then this simple force design would be useful. The acceptability of such a time delay would
depend on the damped period of the oscillator, and various practical considerations, such as, how quickly one
wants to reach the final desired constant displacement value xf , and the capabilities of (and constraints on) the
actuators required to produce the necessary force.

When ζ is close to unity or when one wants to reach the desire final displacement faster, one could consider
using a suitably desired, and acceptable, value of the time T̄ ≤ Tn at which the final displacement value xf
is required to be reached. Figure 9a shows the scaled force Fs(t) needed for the oscillator over the interval
[0, T̄ ] when T̄ = 0.7Tn ≈ 2.19 in the example considered before (with m = 2, k = 8, so that Tn = π s) for
various values of the ζ . Comparing with Fig. 8a, we note that the force Fs(t) over the interval [0, T̄ = 2.19]
is more complex and it is not monotone increasing with time for all ζ values. From a practical standpoint,
such a force–time history could perhaps pose greater difficulties in its implementation. The force could well
exceed F0 = xfk, which is needed to achieve the desired final constant displacement value xf , as shown in
Fig. 9a for ζ = 0.8. In fact, when T̄ /Tn 	 1, F(t) is oscillatory in the interval [0, T̄ ] and can have large
amplitudes, as is shown later on. However, when T̄ /Tn 	 1, though the force F(t) can have large amplitudes
and can have oscillatory behavior in the interval [0, T̄ ] , the response x(t) of the oscillator remains smooth and
monotonically increases; it has no oscillations (or ripples) whatsoever as seen in Fig. 9b. As shown in Fig. 9c,
the velocity ẋs(t) for each value of ζ is always positive in the interval [0, T̄ ] (except at t = 0 and t = T̄ , at
which it is zero), attesting to the monotonicity of the response, x(t).

Figures 10a, b show the (normalized) response xs(t) of the oscillator (with m = 2, k = 8 so that Tn = πs)
and the requisite force Fs(t) for various ζ values shown in Fig. 9a, when T̄ /Tn = 0.015. Figure 10c shows
that in the interval [0, T̄ = 0.0471] the system’s response xs(t) does not have a single ripple since its slope,
ẋ(t), is always positive except at t = 0 and t = T̄ at which times it is zero.
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Fig. 10 m = 2, k = 8, T̄ /Tn = 0.015. For various ζ values, a Fs(t), b xs(t), and c ẋs(t)

As stated above, when T̄ /Tn 	 1, the force Fs(t) required becomes large in the interval [0, T̄ ], and as
shown, it does not seem to change greatly with the value of ζ ; the response too is insensitive to the value of ζ .
Also ẋs(t) ≥ 0 in the interval t ∈ [0, T̄ ], showing that xs(t) monotonically increases in it.

Going back to Eqs. (26) and (27), we have shown that with a proper choice of the parameters b0, c0, and d0
we are assured that for τ ≥ T the oscillator’s response x(τ ) to the ramp force f (τ ) remains constant at the
desired constant displacement xf with no oscillations for 0 ≤ ζ < 1. Figures 7b, 8b, 9b and 10b illustrate that
for τ ∈ (0, T ) (i) the response x(t) is smooth and non-oscillatory (in fact, monotone increasing) as seen in
Fig. 10b, and (ii) the velocity ẋ(t) ≥ 0, which confirms that the response is monotone increasing, as seen in
Fig. 10c.

In summary, the approach is as follows. Consider the system described by Eqs. (26) and (27). Having
decided on the value of T which describes the interval [0, T ] of time at the end of which the oscillator is
desired to reach its desired final displacement value xf , the coefficients b0(ζ, T ), c0(ζ, T ), and d0(ζ, T ) for
a given value of xf are obtained from Eqs. (34) and (28); this explicitly gives the force f (τ ). Equation (27) is
easily solved for any value of 0 ≤ ζ < 1, and its solution x(τ ; ζ, T, xf) is explicitly obtained for τ ∈ [0, T ]
in Appendix 1. This provides x ′(τ ). We find that x ′(τ ) ≥ 0 for τ ∈ [0, T ], when 0 < T ≤ TN = 2π .
The response of the underdamped oscillator for τ ≥ 0 is non-oscillatory in the interval τ ∈ [0, T ] as long
as 0 < T ≤ TN = 2π in Eqs. (26) and (27). The force f (τ ) for τ ≥ T is simply f0 = xf . We have
therefore devised a simple methodology to obtain a force f (τ ) that gets any underdamped oscillator from
x(0) = x ′(0) = 0 to a desired final constant displacement xf without a single ripple in its response.

There are both drawbacks and advantages of the simplistic approach that has been developed in this
subsection. First, the drawbacks. (1) As shown in Fig. 10, the force becomes very large when the interval of
time [0, T ] at the end of which the oscillator is required to have the desired final displacement xf is very small
when compared to the natural frequency of the oscillator (T/TN = T̄ /Tn << 1). As we shall see below,
this appears to be the nature of the problem and happens even with the use of more sophisticated methods,
as shown below. (2) The approach gives so-called ‘open-loop’ control, which is not very robust, and is, in
general, sensitive to perturbations.

Next, the advantages. (1) The approach to steering the oscillator so that it does not have a single ripple
(overshoot/undershoot) in its response presented in this subsection is very simple, and gives closed form results
that can be readily used in real-time. It relies solely on the elementary theory of linear vibrations, well within
the scope of an introductory course on the subject. (2) Having produced a force–time history for which the
response of the system has no oscillations, we have shown that the state described at time T (T̄ ) is ‘reachable’
from the rest state at time τ = 0 (t = 0) while satisfying the necessary and sufficient conditions laid down in
Eqs. (24) [or (25)] along with the condition that f (τ = 0) = 0. (3) We have shown that a suitable control force
over the interval [0, T ] (or, [0, T̄ ]) can be found to satisfy Eq. (24) for all T > 0, so that the underdamped
oscillator’s response has no overshoots/undershoots when T/TN ≤ 1.

The approach developed in this section is just one among many. We next explore the use of a differ-
ent approach to determining the requisite control force over the interval [0, T ] (or, [0, T̄ ]) that satisfies the
conditions given in Eqs. (24) (or (25)) along with the condition f (τ = 0) = 0 (or F(t = 0) = 0).

4.2 Open-loop optimal control

The connection between the two alternative formulations described by Eqs. (26)–(27) and (35)–(36), and the
way of using the former to arrive at the latter has been amply described. In what follows, the former formulation
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will be used in which the time τ = ωnt is dimensionless, and the natural period of the oscillator is normalized
to TN = 2π .

Instead of approaching the problem from a purely ‘vibrations’ (dynamics) viewpoint, as was done in the
previous subsection, in this subsection we approach the problem from a ‘controls’ viewpoint. The force f (τ )
is explicitly viewed as a control force, and optimal control is sought.

Were it to be required that the undamped/underdamped oscillator simply be steered from the state {x(τ =
0) = x ′(τ = 0) = 0} to the state {x(τ = T ) = x ′(τ = T ) = 0} in the interval [0, T ], 0 < T ≤ TN = 2π ,
finding the optimal control force f (τ ) to do this would constitute a standard ‘terminal state’ optimal control
problem [12,13]. However, for the response of the system for τ ≥ T to be free of any oscillations and maintain
the desired final displacement xf , we also require to include the constraint f (T ) = xf on the control force (see
Eq. (24)); additionally, knowing that in most mechanical systems we cannot exert forces instantaneously, we
also enforce the constraint f (0) = 0.

With these two constraints on the control f (τ ), which are on a set of measure zero and which need to
be exactly satisfied, standard optimal control formulations cannot be directly applied. This may account for
the reason why in the dynamics and controls literature this problem appears not to have been attempted using
optimal control theory. One approach to include these constraints on the desired control force f (τ ) would be
to compute the optimal trajectory (using the Hamilton–Jacobi approach) without these constraints and then
modify it afterwards to satisfy these two force constraints, which are over the two sets of measure zero (at
τ = 0 and τ = T ). This route, if pursued, appears to encounter subtle aspects of functional analysis, and ends
up becoming intractable. In what follows we take a somewhat novel approach, which deals with modifying
the very description of the dynamical system itself, albeit preserving its integrity. The approach benefits from
being both simpler and more direct.

The second-order system (see Eqs. (26)–(27)) that describes the oscillator with (normalized) natural period
TN = 2π over the time interval τ ∈ [0, T ] is given by (τ is the dimensionless time)

x ′ = y, y′ = −2ζ y − x + f (τ ). (38)

Assuming that all functions of τ are sufficiently differentiable in the interval [0, T ], we consider instead the
augmented system in which we include the control force f (τ ) as an element of the state vector denoting it,
for convenience, by the variable z(τ ) := f (τ ), so that Eq. (38) now reads

x ′ = y, y′ = −2ζ y − x + z, 0 ≤ τ ≤ T . (39)

To these two equations we add the ‘control’ equation

z′ = w(τ), 0 ≤ τ ≤ T, (40)

where w(τ) is now our ‘pseudo-control.’ We hence arrive at our ‘augmented’ system, which is described by
Eqs. (39) and (40), which now has the three-dimensional state vector

x̂(τ ) = [x(τ ), y(τ ), z(τ ) = f (τ )]T, 0 ≤ τ ≤ T, (41)

where superscript T denotes the transpose of the row-vector, and our the pseudo-control is w(τ).
We need to find a suitable (pseudo) control w(τ) so that the system is steered from its initial state

Xi := {x(0) = 0, y(0) = 0, z(0) = f (0) = 0} (42)

to its final state

Xf := {x(T ) = xf , y(T ) = 0, z(T ) = f (T ) = xf}. (43)

This simple idea of including the actual control force f (τ ) as part of the state equation that describes the
augmented system lifts the problem to a ‘terminal state’ optimal control problem.

Consider the simple cost function J1 (one could use other cost functions that also penalize large values of
x(t) and y(t) for instance) given by

J1 = 1

2

T∫
0

[
α f (τ )2 + βw(τ)2

]
dτ = 1

2

T∫
0

[
αz2 + βw2] dτ, α ≥ 0, β > 0 (44)
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Fig. 11 α = 0, T/TN = 0.7. a fs(τ ), b xs(τ ), c x ′
s(τ ), for different ζ values

Fig. 12 α = 0, T/TN = 0.015. a fs(τ ), b xs(τ ), c x ′
s(τ ), for different ζ values

where α and β are suitable constants. Note that the second member under the integral in Eq. (44) penalizes
excessive changes in the actual control force f (τ ) since w(τ) = f ′(τ ) = z′(τ ).

Using the Lagrange multipliers λi (τ ), i = 1, 2, 3, we extremize the functional

Ĵ1 = J1 +
T∫

0

[λ1(τ )(y − x ′) + λ2(τ )(−2ζ y − x + z − y′) + λ3(τ )(w − z′)]dτ (45)

by using the calculus of variations. This yields the following state and costate equations (see Appendix 2) over
the time interval τ ∈ [0, T ]

x ′ = y, λ′
1 = λ2,

y′ = −2ζ y − x + z, λ′
2 = 2ζλ2 − λ1,

z′ = w, λ′
3 = −λ2 − αz, and w = −λ3

β
,

(46)

subject to the boundary conditions Xi and Xf given in Eqs. (42) and (43). Its solution provides the optimal
‘pseudo-control’ w(τ), and ensures that the actual control force f (τ ) := z(τ ) satisfies the constraints at the
endpoints of the interval. Somewhat surprisingly, a closed form solution to these equations can be determined.
It is easy to show formally that our augmented system given by Eqs. (39) and (40) is reachable, a conclusion
that also follows from considerations of mechanics.

Figure 11 shows the steering force, and the response of the system with α = 0, and T/TN = T/2π =
0.7, T ≈ 4.4, for various values of ζ . Since α = 0, no cost (see Eq. (44)) is attached to the magnitude
of the steering force f (τ ), and the value of β becomes inconsequential. The plots shown are scaled so that
xs(τ ) = x(τ )/xf , and fs(τ ) = f (τ )/xf . As seen in Fig. 11c, x ′

s(τ ) ≥ 0 over the interval [0, T ] indicating that
the response has no ripple or oscillations whatsoever.

Figure 12 shows the steering control force and the response when α = 0, T/TN = 0.015. Again the
response is smooth and does not have any oscillations (ripples), though the time interval [0, T ≈ 0.094] during
which the oscillator reaches its final desired constant value is now 0.015 of its natural period, TN . The various
curves in Fig. 12 for different ζ values shown in Fig. 11a almost fall on each other and are indistinguishable
at the scale shown; the percentage of critical damping appears to have little effect on either the steering force
fs(τ ), which is large and oscillatory now, and on the oscillator’s response.
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Fig. 13 α = 10, β = 1, T/TN = 0.7. a fs(τ ), b xs(τ ), c x ′
s(τ ), for different ζ values

Fig. 14 α = 10, β = 1, T/TN = 0.7. a fs(τ ), b xs(τ ), c x ′
s(τ ), for different ζ values

Were we to include in our cost function a cost associated with the magnitude of the steering force f (τ ) :=
z(τ ), by choosing a value of α > 0 (see Eq. (44)), the response of the oscillator turns out to be oscillatory in
the interval [0, T ] as shown in Fig. 13. Taking α = 10, β = 1, the results show that the oscillator’s response
is now no longer always a monotonic increasing function of time for all values of ζ as shown in Fig. 13b, and
more clearly so in Fig. 13c where we see that the velocity x ′

s(τ ), is continuous and changes sign. For smaller
values of ζ the transient response is non-monotone increasing in time. The steering control force also does not
monotonically increase.

While the cost function is often taken by control theorists to minimize the L2 norm of the control force
often for purposes of analytical tractability, from a physical standpoint it appears that a better criterion for us
here might be the minimization of the work done by the control force f (τ ) over the interval [0, T ].

Using the cost function J2

J2 = 1

2

T∫
0

[
α f (τ )y(τ ) + βw(τ)2

]
dτ = 1

2

T∫
0

[
αz(τ )y(τ ) + βw2] dτ, α ≥ 0, β > 0, (47)

in which the first term now places a cost on the work done by the steering force in the interval [0, T ], one
obtains, after using the augmented cost function as in Eq. (45) with the Lagrange multipliers, the state and
costate equations as

x ′ = y, λ′
1 = λ2,

y′ = −2ζ y − x + z, λ′
2 = 2ζλ2 − λ1 − α

2 z,

z′ = w, λ′
3 = −λ2 − α

2 y, and w = −λ3
β

.

(48)

The derivation of the costate equations follow in a manner similar to that shown in Appendix 2, and is omitted
here for brevity. An analytical solution to Eq. (48) subject to the boundary conditions (42) and (43) is difficult,
and they are numerically solved using Matlab’s bvp4c function. The two cost functions J1 and J2 are identical
when α = 0. However when α > 0, the cost function (47) yields a monotonically increasing response x(τ ) in
the interval [0, T ] with no oscillatory behavior.

The next two figures (Figs. 14, 15) relate to results obtained using the cost function J2 that aims tominimize
the work done by the control force f (τ ) over the interval [0, T ].
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Fig. 15 α = 10, β = 1, T/TN = 0.005. a fs(τ ), b xs(τ ), c x ′
s(τ ), for different ζ values

Figure 14 shows the optimal control force fs(τ ) = f (τ )/xf for various values of ζ when the duration of
time T set to reach the final desired displacement is T = 0.7TN ≈ 4.4. Note that the response xs(t) shown
in Fig. 14b over the interval [0, T ] is monotonically increasing. Furthermore, as seen from the slope of this
curve shown in Fig. 14c, which is positive except at τ = 0 and at τ ≥ T , the response xs(t) has no oscillations
whatsoever.

Figure 15 shows the steering control for T/TN = 0.005. In Fig. 15b we observe the smooth response xs(t)
of the oscillator, with which the desired final constant value of displacement is reached, starting from rest.
This final displacement is reached at the end of 1/200th of the oscillator’s dimensionless frequency TN = 2π .
This is done of course at the expense of a very large-amplitude force fs(τ ) = f (τ )/xf as seen in Fig. 15a.
The various curves for the different values of ζ shown in Fig. 14a fall closely on top of one another as shown
in Figs. 15b, c.

Having used optimal control, which works well and provides the facility to use different cost functions
and weight the control cost as necessary, the control still lacks robustness. The pseudo-control force is not a
function of the current state x̂(τ ) (see Eq. (41)); it can in fact be precomputed, and then applied for τ belonging
to the interval [0, T ]. If, for some reason, the state is perturbed off the optimal trajectory, then such an open-
loop control will not satisfy the conditions given in Eq. (43) at time τ = T . Both the control approaches dealt
with so far have this disadvantage. We therefore next seek a closed-loop feedback pseudo-control force w(τ),
which would substantially reduce the sensitivity of the control to deviations that could arise during practical
implementation.

4.3 Closed-loop optimal control

Using again the augmented dynamical system with the (pseudo) control w(τ) described by Eqs. (39) and (40),
namely (recall, z(τ ) ≡ f (τ ))

ˆ̇x :=
⎡
⎣ ẋ

ẏ
ż

⎤
⎦ =

⎡
⎢⎣
0 1 0

−1 −2ζ 1

0 0 0

⎤
⎥⎦

︸ ︷︷ ︸
Â

⎡
⎣ x
y
z

⎤
⎦ +

⎡
⎣0
0
1

⎤
⎦w, 0 ≤ τ ≤ T, (49)

we determine w(τ) in this subsection by considering closed-loop optimal control (CLOC). CLOC is obtained
for the ‘terminal control’ problem with boundary conditions given by Eqs. (42) and (43). That is, by using a
suitable closed-loop pseudo-control input, w(τ), 0 ≤ τ ≤ T , the aim is to steer the (augmented) state vector
x̂(τ ) from its initial value x̂(0) = 0 to its terminal value x̂(T ) = [xf , 0, xf ]T.

Consider the cost function [13]

J3 = 1

2
x̂ T (T )S(T )x̂(T ) + 1

2

T∫
0

[
x̂ T Qx̂ + βw2

]
dt, (50)

in which the 3 by 3 matrices S(T ) ≥ 0, Q ≥ 0, and the scalar β > 0.
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We denote the symmetric matrix

S(τ ) =
⎡
⎢⎣
s1(τ ) s2(τ ) s3(τ )

s2(τ ) s4(τ ) s5(τ )

s3(τ ) s5(τ ) s6(τ )

⎤
⎥⎦ ≥ 0, and S1(τ ) = [s3, s5, s6] (51)

and the 3 by 3 matrix

V (τ ) = [vi, j (τ )] with V1(τ ) = [v31, v32, v33]. (52)

The following two matrix equations are then simultaneously solved backwards [12]:

− Ṡ = ÂT S + S Â − 1

β

⎡
⎢⎣
s3 S1
s5 S1
s6 S1

⎤
⎥⎦ + Q, 0 ≤ τ ≤ T, given S(T ) (53)

and

V̇ =
⎡
⎢⎣

0 1 s3/β

−1 2ζ s5/β

0 −1 s6/β

⎤
⎥⎦ V, 0 ≤ τ ≤ T, V = I. (54)

In addition to the integral term in Eq. (50), the matrix S(T ) provides, in general, the facility of penalizing
deviations of the terminal state from zero so that the feed-back optimal control reduces such deviation at
τ = T . The only component of the terminal state that is needed to be brought to zero is y. Hence, if desired,
in order to bring y(T ) closer to zero, one could specify in the computations S(T ) = beDiag(0, 1, 0) by using
a suitable constant value of be > 0.

From the solution of Eqs. (53) and (54), the symmetric matrix

P(τ ) =
τ∫

T

1

β

⎡
⎢⎣

v31(s) V1(s)

v32(s) V1(s)

v33(s) V1(s)

⎤
⎥⎦ ds (55)

is obtained [12]. The optimal feedback control is then obtained as

w(τ) = − 1

β

[
s3 s5 s6

]
x̂(τ ) + 1

β
[v31 v32 v33] P

−1(τ )
{
V T x̂(τ ) − x̂(T )

}
, 0 ≤ τ ≤ T . (56)

It should be pointed out that this feed-back control, w(τ), aims to have the augmented system exactly reach
its terminal state; it is then used to determine the response of the augmented system described by Eq. (49).
The actual control f (τ ) applied to the oscillator (see Eq. (26)) is of course the third component, z(τ ), of the
augmented state vector, x̂(τ ), which can be obtained from x̂(τ ).

The first member on the right-hand side of Eq. (50) could also be set to zero by setting S(T ) = 0 (or,
be = 0). Further, when Q = 0 solving Eq. (53) backwards with this boundary condition would obviously
result in the solution S(τ ) ≡ 0 for 0 ≤ τ ≤ T , and consequently the first member on the right hand side of
Eq. (56) becomes zero. The feedback pseudo-control w(τ) is then proportional only to {V T x̂(τ )− x̂(T )}, and
it is independent of the parameter β.

We note from Eq. (55) when τ = T , P(T ) = 0, and so P−1(T ) does not exist. As is well known [12],
the solution to the terminal optimal control problem has the drawback that the control does not remain finite
at the endpoint τ = T of the interval [0, T ]. In fact, this is the price that is paid for requiring that the control
exactly drive the (augmented) system to its terminal state, x̂(T ).

To circumvent this singularity problem at τ = T which arises in terminal state feedback optimal control
problems, in this paper the following is done. The integration of the augmented system (Eq. (49)) with the
feedback control w(τ) determined in Eq. (56) is carried out for a time slightly less than T (i.e., before the
singularity is reached), namely for a time Tγ = (1− γ )T, γ << 1. This gives us the augmented state vector,
x̂(τ ), in the interval [0, Tγ ], and thus the value of z(Tγ ), and therefore f (Tγ ), since z(τ ) = f (τ ) (see Eq.
(26)). Over the short interval [(1 − γ )T, T ], Eq. (26) is used to determine the response of the oscillator, and
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Fig. 16 S(T ) = Q(T ) = 0, T/TN = 0.7. a fs(τ ), b xs(τ ), c x ′
s(τ ), for different ζ values

Fig. 17 α = 10, β = 1, S(T ) = 0, T/TN = 0.0057. a fs(τ ), b xs(τ ), c x ′
s(τ ), for different ζ values

the force f (τ ) in this interval is obtained by linearly interpolating f (τ ) between its values f (Tγ ) = z(Tγ )
and f (T ) = xf at the two ends of this interval, so that

f (τ ) = f (Tγ ) + [xf − f (Tγ )] τ − Tγ

T − Tγ

, Tγ = (1 − γ )T ≤ τ ≤ T . (57)

Through approximate, this control force in the interval [(1 − γ )T, T ] appears to work reasonably well. One
could use a very small value of γ and reduce this interval to becomeminute by using higher precision arithmetic
in the computations.

Some numerical results from using the feedback optimal control approach are shown in Fig. 16. With
S(T ) = Q = 0 and γ = 1e−3, the results for T = 0.7TN are shown for different values of ζ .

Comparing this Figure with Fig. 11, we see that we have obtained the feed-back optimal control version
now for the open-loop control that was obtained earlier in Fig. 11. The control forces fs(τ ) in the two figures
are the same, as are the responses shown in Fig. 16b for the various values of ζ . Note that there is not a single
ripple in the response, as seen from Fig. 16c which shows that the slope, x ′(τ ), is always positive except at
τ = 0 and τ ≥ T where is zero.

Similarly were we to take S(T ) = 0 and Q = Diag(0, 0, α) so that we are penalizing large values of
f (τ ) = z(τ ), we would get, for α = 10 and β = 1, the results shown in Fig. 13, because we would simply
obtain the closed-loop version of the open-loop control that we had earlier, and the cost functions J1 and J2
would be identical.

Lastly, we show the results of closed-loop optimal control for a different value of T/TN = 0.005 for
the five values of ζ shown in Fig. 16a. We take α = 10 and β = 1. The response is smooth and monotone
increasing in time with no overshoots or undershoots. As observed before, the response is insensitive to the
values of ζ .

There is a striking similarity between Figs. 15 and 17. However, the cost function used to obtain the result
in Fig. 15 is J2 while that used to obtain Fig. 17 is J3. When the interval of time is very short (compared to
the normalized period, TN = 2π) over which the desired final displacement is to be reached, the two cost
functions give about the same kind of control.

The three approaches used above by no means provide a totality of ways in which the terminal control
problemof transferring the state of the (normalized) oscillatory system from its zero (displacement and velocity)
state to the required terminal state x(T ) = xf and x ′(T ) = 0, while using a force that also satisfies the terminal
conditions f (0) = 0 and f (T ) = xf . Several variants of these approaches can be used, alongwith other entirely
different methods. The three approaches provided here simply typify three common modes of thought—the
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Fig. 18 Desired piecewise constant displacement trajectory xf (t)

idea of using a simplistic force described by a low-order polynomial, the idea of using optimal open-loop
control, and then closed-loop optimal control.

5 Piecewise constant displacement time-history tracking for undamped and underdamped system with
no overshoots and undershoots

The methods suggested above can now be extended and applied to the problem of tracking a sequence (in
time) of constant displacement states xf(t), as shown in Fig. 18, for an underdamped oscillator. The response
is required to have no ripples whatsoever. Such a requirement to track a piecewise constant displacement
trajectory is useful in many applications such as power systems that distribute constant power, chemical mixers
that require constant amounts of ingredients to be mixed to produce different products, and more importantly
in various applications in civil, mechanical, and aerospace engineering, where large instantaneous forces are
difficult, if not impossible, to generate.

To illustrate the simplicity of the general approach, consider the desired piecewise constant trajectory xf(t)
shown in Fig. 18 demanded of an underdamped (or undamped) SDOF system. In other words, the SDOF
system is required to have a sequence of constant displacement amplitudes given by

xf(t) = xi , for t ∈ (ti , ti+1], ti+1 > ti , i = 0, 1, 2, . . .

with jumps in the displacement of the oscillator at desired times t0, t1, t2, . . . .
The aim is to find sets of simple practical (control) forces to be provided to the underdamped SDOF system

so that it follows this piecewise constant displacement trajectory as closely as possible, without any overshoots
or undershoots. We argue as follows.

In order to have xi as the desired final displacement in the interval (ti , ti+1] we ultimately need a constant
force Fi = kxi in this interval. We assume likewise that in the previous interval (ti−1, ti ] within which the
desired constant displacement state is xi−1, the constant force Fi−1 = kxi−1 has ultimately been used. To
reach such a constant displacement level without any overshoots or undershoots in the interval (ti , ti+1] all that
is needed is to suitably ramp up (or ramp down), over a desired interval of time T̄ ≤ ti+1 − ti , the (constant)
force Fi−1 used in the previous interval to Fi , which is the force to be ultimately employed in this interval.
For no oscillations to occur in the interval [ti + T̄ , ti+1], the state at time ti must be propagated to the desired
state xi at time ti + T̄ so that the necessary and sufficient conditions (see Eqs. (24) and (25))

x(ti + T̄ ) = xi , ẋ(ti + T̄ ) = 0, F(ti + T̄ ) = kxi , i = 0, 1, 2, . . . . (58)

be satisfied.
One can do this by using any of the three elementary methods proposed in the previous section, or perhaps

some other suitable methods.
For example, using the low-order polynomial considered in Sect. 4.1, the ramp force function in the interval

[ti , ti+1]

Fi (t) =
{
Fi−1 + B0 t̃ + C0 t̃ + D0 t̃, 0 < t̃ ≤ T̄

k xi , ti + T̄ ≤ t ≤ ti+1, (59)
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Fig. 19 m = 2, k = 8, ζ = 0.02. a Desired response, xf (t), b step-function response, c closed-loop optimal control response
x(t)

where t̃ = t − ti , and 0 < T̄ ≤ Tn , will provide a transition between two levels of constant displacement
without a single ripple of oscillation between the two levels. The values of the constants B0,C0, and D0 are
obtained as in Sect. 4.1 so that the SDOF system gets a sustained (long-time) displacement response change
of (xi − xi−1) over a duration T̄ when starting from zero initial conditions. Instead of using the polynomial
force over the interval 0 < t̃ ≤ T̄ one could use the force obtained by using open-loop control (Sect. 4.2) or
by using closed-loop control (Sect. 4.3).

We next illustrate tracking control of piecewise constant trajectories using the closed-loop optimal control
approach described in Sect. 4.3 that ensure the conditions given in Eq. (58). Instead of using the polynomial
force function B0 t̃ +C0 t̃2 + D0 t̃3 in Eq. (59), a closed-loop optimal control force F(t̃), which is more robust,
is used.

For illustration, we consider an underdamped oscillator (m = 2, k = 8, ζ = 0.02) that starts from zero
initial conditions. Our aim is to track the time-history xf(t) shown in Fig. 19a. The desired piecewise constant
displacement of the oscillator has jumps at times ti = 0, 30, 90, 140, 220, and 270 s.

The oscillator’s natural period Tn = π s. Figure 19b shows the displacement response of the oscillator
when subjected to a control force comprising a series of step functions of magnitude Fi (t) = k xf(ti ), at
times t = ti . As expected, the lightly damped oscillator has large amplitude overshoots and undershoots in its
response. Figure 19c shows the response obtained using the closed-loop optimal control approach developed
in Sect. 4.3, with S = Q = 0 in Eq. (50). Over each of the time intervals, (ti , ti + T̄ ], the force in ramped up
(or down). The time over which the force is non-constant in each interval (ti , ti+1] is T̄ = 0.1Tn ≈ 0.314 s,
which is a tenth of the natural period of the oscillator. In each of these intervals, beyond the time T̄ the force
is a constant and has a value of k xf(ti ), which is the same value as for the series of step functions used to
generate the response shown in Fig. 19b. The response of the oscillator to the closed-loop control is shown in
Fig. 19c. As seen, the oscillator’s response follows the desired piecewise constant trajectory very closely in
each time segment (ti , ti+1], except initially over an interval of time T̄ . The response of the oscillator to the
closed-loop control force shown in Fig. 19c is smooth and has no overshoots or undershoots.

One can see this more clearly in Fig. 20, which shows the response on an expanded time scale over two
intervals when the amplitude of the oscillator’s displacement response changes in what looks like a ‘step’ in
Fig. 19c. Notice how each of these forces levels off at the value of the force required to maintain the constant
displacement values (see Eq. (59)) required in each interval over which the displacement is piecewise constant.
The response has no overshoots or undershoots.

Lastly, we consider the situation in which the time to transit between two different consecutive values of
the desired piecewise constant displacement is required to be very small compared to be the oscillator’s period,
a situation not altogether uncommon.

Figure 21a shows the same desired piecewise constant trajectory to be tracked by the same oscillator
(m = 2, k = 8, ζ = 0.02) but the timescale in Fig. 19a has been reduced by a factor of 100.

The oscillator, whose natural period Tn = π s, when subjected to the series of step functions Fi = k xf(ti )
applied at time t = ti that produce the constant steady state response levels shown in Fig. 21c, shows a smooth
displacement response (Fig. 21b). Its natural period being π s, the oscillator cannot ‘feel’ all the ‘small’
duration changes in the step function force profile F(t) whose shape looks exactly like the one in Fig. 21a,
except that the ordinate now is multiplied by k.

Using the closed-loop control that is developed, the trajectory tracking is shown in Fig. 21c. In each of the
subintervals (ti , ti+1] in which the desired displacement is required to be a constant, the time T̄ over which
the closed-loop control force (and therefore also the displacement response) is non-constant is prescribed to
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Fig. 20 Response to closed-loop control force F(t) around time a t = 90 s, b t = 200 s

Fig. 21 m = 2, k = 8, ζ = 0.02. a Desired response, xf (t), b step-function response, c closed-loop optimal control response
x(t)

Fig. 22 Response to closed-loop control around time a t = 0 s, b t = 0.9 s, c t = 2.2 s

be T̄ = 0.01Tn ≈ 0.0314 s. The response to the closed-loop optimal control force that tracks the desired
displacement trajectory is smooth and has no overshoots or undershoots as shown in Fig. 21c.

This is seen more clearly from Fig. 22 where the response is shown at three locations of time where a
jump in the desired displacement occurs. As seen, the response of the oscillator is smooth with no oscillations.
We thus have a simple closed-loop control approach to have the oscillator closely track a piecewise constant
trajectory in a smooth manner with no overshoots or undershoots. To achieve this, the force applied to it in each
time interval (ti , ti=1] is non-constant only over the short sub-interval (ti , ti + T̄ ]. The price paid for making
T̄ very small is, of course, that the force required in these short sub-intervals of duration T̄ would need to be
large (see Fig. 17).

6 Conclusions

This paper explores a commonly occurring practical problem in aerospace, mechanical, and civil engineering
systems in which a system is required to follow a piecewise constant trajectory. Step function forces provide
oscillatory responses,with significant overshoots and undershoots, especially for lightly damped systems. From
a practical standpoint, because of inertia in a mechanical system it is often very difficult, if not impossible,
to generate large instantaneous forces that can be modeled as step functions. The paper provides a general
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approach to the development of simple, practical force–time histories that can provide the capability to track
such piecewise constant displacement trajectorieswithout any overshoots and undershoots for an underdamped
(and even undamped) single degree of freedom (SDOF) system. While the paper deals with SDOF systems,
the approach developed here is also applicable to classically damped multi-degree of freedom systems that
have underdamped classical modes of vibration.

The paper first investigates the development of force–time histories F(t) in which the force is increased
not instantaneously, but over a suitably small (prescribed) interval of time, say T̄ , so that an under-
damped/undamped oscillator starting from rest attains a desired constant value of displacement xf at the
end of this interval and maintains it forever thereafter without there being any undershoots or overshoots in its
response.

As a prelude to this, in Sect. 2 the study of an undamped oscillator is considered. It is shown that if (i)
the force applied to the undamped system is ramped up linearly in time, (ii) the interval T̄ is chosen to be
the natural period Tn of the oscillator, and (iii) the force F(t) is made to reach the value needed to maintain
the desired constant steady state displacement, i.e., F(t) = kxf when t ≥ T̄ , where k is the stiffness of the
oscillator, the undamped oscillator’s response will smoothly increase from its initial value of zero to its desired
final constant displacement over the interval T̄ and remain there thereafter, with no overshoots or undershoots.
To the best of the author’s knowledge, this simple result, which requires use of just the elementary theory of
vibrations appears to have gone unnoticed so far in the literature dealing with the theory of vibrations.

The underlying idea, which serves as the inspiration for the following section, is simple. To have an
undamped oscillator (initially at rest with zero initial displacement) reach a constant (nonzero) desired static
displacement value, instead of using a step function type of force, which would cause the response to endlessly
overshoot and undershoot the desired constant displacement value, one simply employs a ramp force over
a short duration of time. After the force reaches the value required to produce the required constant (static)
displacement, it is held constant at that value. A linear (in time) ramp over a duration of the natural period of
an undamped oscillator followed by a constant force that would generate the desired constant displacement is
shown to completely suppress the oscillations of an undamped oscillator when it is required to reach a constant
displacement response.

Necessary and sufficient conditions are obtained so that a desired constant displacement is achieved by an
uderdamped oscillator (starting from rest with zero displacement) for all time t ≥ T̄ , where 0 < T̄ ≤ Tn , where
Tn is the natural period of the oscillator. Using these conditions, force–time histories are obtained in which
an underdamped oscillator can reach a constant (nonzero) displacement at the end of a pre-specified interval
T̄ ≤ Tn andmaintain this displacement thereafter with no overshoots and undershoots (oscillations) in its entire
response. A preliminary approach using a polynomial forcing function is first considered, establishing thereby
the ‘realizability’ of such a control force that causes no ripples in the response of the underdamped oscillator
and maintains a constant response at and beyond a pre-specified duration of time. Open-loop and closed-loop
optimal control are then considered; compared to open-loop optimal control, the latter leads to robust optimal
control. It is shown that the development of an optimal control falls outside the standard framework of the
so-called terminal control problem because it requires that the control force be constrained over sets of measure
zero in time. This makes the Hamilton–Jacobi approach difficult, if not impossible, to use. It appears that the
recognition of such constraints may have hereto prevented the use of closed-loop control methods in handling
the problem. In this paper a simple new approach is developed to surmount this problem by modifying the very
description of the dynamical system, thereby making it amenable to both open- and closed-loop control. A
rippleless response is thereby engendered by the oscillator, resulting finally in constant displacement beyond
a pre-specified interval of time.

The ease and efficacy with which the closed-loop control is obtained is demonstrated by having a lightly
damped oscillator track a piecewise constant time-history, with no overshoots and/or undershoots. This is
a common requirement not just in the control of vibrating aerospace, civil, and mechanical systems but in
many others; for example, in the power industry when piecewise constant power levels may be required, and
in process/food industries where piecewise constant levels of chemicals/ingredients are desired to be mixed
together and/or produced.

This work represents only the beginning of an exploration into determining simple, robust force time
histories to achieve commonly desired response time histories from underdamped/undamped linear dynamical
systems, from a vibrations (or mechanics) viewpoint and, correspondingly, also from a controls perspective.
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Appendix 1

Consider the equation

x ′′ + 2ζ x ′ + x = f (t), x(0) = 0, x ′(0) = 0, 0 ≤ τ ≤ T, (60)

in which f (τ ) = b0τ + c0τ 2 + d0τ 3.
Since we require that f (T ) = xf ,

b0 = x f

T
− c0T − d0T

2 (61)

so that

f (τ ) = (−T τ + τ 2
)
c0 + (−T 2τ + τ 3

)
d0 + x f τ

T
. (62)

The solution to Eq. (60) with this right hand side is

x(τ ) = A + Bτ + Cτ 2 + Dτ 3 + exp(−ζ τ)[H1 cos(Sτ) + H2 sin(Sτ)], (63)

where S = √
1 − ζ 2, 0 ≤ ζ < 1. Its derivative with respect to τ is

x ′(τ ) = B + 2Cτ + 3Dτ 2 + exp(−ζ τ)[(SH2 − ζH1) cos(Sτ) − (SH1 + ζH2) sin(Sτ)]. (64)

The constants in Eqs. (63) and (64) are

A = 2
(
T ζ + 4ζ 2 − 1

)
c0 + 2

(
T 2ζ − 24ζ 3 + 12ζ

)
d0 − 2ζ xf

T
, (65)

B = − (T + 4ζ ) c0 − (
T 2 − 24ζ 2 + 6

)
d0 + xf

T
, C = c0 − 6ζd0, D = d0, (66)

H1 = −A, and H2 = − (B + ζ A)

S
. (67)

Using the expressions in Eqs. (63) and (64) with the conditions

x(T ) = xf and x ′(T ) = 0 (68)

and substituting for x(τ ) in Eq. (29), the requirements that x(T ) = xf and x ′(T ) = 0 lead to Eq. (34)
where

p1 = −e−T ζ α cos(ST ) + e−T ζ

(
α1

S
− αζ

S

)
sin(ST ) − 2T ζ + 8ζ 2 − 2, (69)

p2 = −e−T ζ β cos(ST ) + e−T ζ

(
β1

S
− βζ

S

)
sin(ST ) − γ ζ − 6T, (70)

q1 = e−T ζ α1 cos(ST ) + e−T ζ

([
S + ζ 2

S

]
α − ζα1

S

)
sin(ST ) + T − 4ζ, (71)

q2 = e−T ζ β1 cos(ST ) + e−T ζ

([
S + ζ 2

S

]
β − ζβ1

S

)
sin(ST ) + γ

2
+ 6, (72)

r1 = −2ζe−T ζ cos(ST )

T
+ (1 − 2ζ 2)e−T ζ sin(ST )

ST
+ 2ζ

T
, (73)

r2 = e−T ζ cos(ST )

T
+ e−T ζ sin(ST )

(
2ζ S

T
− (1 − 2ζ 2)ζ

ST

)
− 1

T
, (74)

α = 2(T ζ + 4ζ 2 − 1), α1 = T + 4ζ, (75)

β = 2ζ
(
T 2 + 12 − 24ζ 2) , β1 = T 2 − 24ζ 2 + 6, (76)

and

γ = 2
(
2T 2 − 12 − 12T ζ + 24ζ 2) . (77)
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The determinant of the matrix A0 (see Eq. (34)) is given by

Det(A0) = 2T 2 − 12T ζ + 12 + e−T ζ

[
T 2 + 24ζ 2 − 24

S
T sin (ST ) + (8T 2 − 24) cos(ST )

]
+(2T 2 + 12T ζ + 12)e−2T ζ . (78)

Noting that S = √
1 − ζ 2, the Taylor series expansion of this determinant, taken at T = 0, is

Det(A0)|T=0 = 1

720
T 8 − 1

720
ζT 9 +

(
1

1260
ζ 2 − 1

16,800

)
T 10 + O(T 11). (79)

Using symbolic computation to obtain x ′(τ ), we find that x ′(τ ) ≥ 0 when 0 < T ≤ TN = 2π . Thus
no oscillations in the response x(τ ) seem to occur when T ≤ TN = 2π . The same appears to be true for
T = TN

√
1 − ζ 2 := TD .

Appendix 2

Taking the variation of Ĵ1we obtain

δ Ĵ1 =
∫ T

0
{αz δz + βw δw + λ1(y − δx ′) + λ2(−2ζ δy − δx + δz − δy′) + λ3(δw − δz′)}dτ

=
∫ T

0
{(λ′

1 − λ2)δx + (λ′
2 + λ1 − 2ζλ2)δy + (λ′

3 + λ2 + αz)δz + (λ3 + βw)δw}dτ
− λ1δx |T0 − λ2δy|T0 − λ3δz|T0 .

Noting that δx(0) = δy(0) = δz(0) = δx(T ) = δy(T ) = δz(T ) = 0, and noting that the variations δx , δy,
and δz under the integral sign are arbitrary, we obtain

λ′
1 = λ2, λ′

2 = 2ζλ2 − λ1, λ
′
3 = −λ2 − αz, and w = −λ3/β,

as given in Eq. (46).

References

1. Tabalabaei, M., Barati-Bilaji, R.: Non-overshooting PD and PID controllers design. Automatica 58(4), 400–409 (2017)
2. Phillips, S.E., Seborg, D.E.: Conditions that guarantee no overshoot for linear systems. Int. J. Control 47(4), 1043–1059

(1988)
3. Hara, S., Kobayashi, N., Nakamizo, T.: Design of non-undershooting multivariable servo systems using dynamic compen-

sators. Int. J. Control 44, 331–342 (1986)
4. Vidyasagar, M.: On undershoot and minimum phase zeros. IEEE Trans. Autom. Control 31, 440 (1966)
5. Singh, T.: Optimal Input Shaping for Dynamical Systems. CRC Press, Boca Raton (2010)
6. Raleigh, J.W.S.: Theory of Sound. Dover, New York (1945)
7. Lamb, H.: The Dynamical Theory of Sound. Dover, New York (1960)
8. Den Hartog, J.P.: Mechanical Vibrations. Dover, New York (1984)
9. Meirovitch, L.: Fundamentals of Vibrations. Mc-Graw Hill, New York (2001)

10. Rao, S.: Mechanical Vibrations, 6th edn. Prentice Hall, London (2017)
11. Balachandran, B., Magrab, E.: Vibrations, 3rd edn. Cambridge University Press, Cambridge (2018)
12. Bryson, A., Ho, Y.C.: Applied Optimal Control, pp. 148–164. Ginn and Company, Boston (1969)
13. Lewis, F., Vrabie, D.L., Syrmos, V.: Optimal Control, 3rd edn, pp. 184–185. Wiley, New York (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.


	Piecewise constant response of underdamped oscillators through suppression of overshoots and undershoots in aerospace, civil, and mechanical systems
	Abstract
	1 Introduction
	2 The undamped oscillator
	3 The underdamped oscillator
	4 Forces that produce no overshoots/undershoots in the response of underdamped oscillators
	4.1 Polynomial forcing function—a preliminary approach
	4.2 Open-loop optimal control
	4.3 Closed-loop optimal control

	5 Piecewise constant displacement time-history tracking for undamped and underdamped system with no overshoots and undershoots
	6 Conclusions
	References




